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A method is described for obtaining pure absorption phase spectra in four quadrants in a two-dimensional nuclear magnetic resonance 
spin exchange experiment. It is shown that phase correction results in a substantial increase in resolution and discrimination while 
maintaining a signal-to-noise ratio comparable to that of the usual magnitude spectrum. Experimental results are presented for the 
application of the method to a biological macromolecule, the bovine pancreatic trypsin inhibitor. 
 

The use of two-dimensional NMR methods to observe nuclear Overhauser and chemical exchange phenomena 
have generated considerable excitement (1-3). These techniques are able to resolve many individual spin exchange 
effects even in complex systems such as biological macromolecules, and they permit rapid and systematic data 
collection. The quantitative interpretation of this data has been limited by the application of absolute value and 
power transforms to obtain suitable peak shapes (4). These nonlinear transforms generate positive definite spectra 
from data that would otherwise have both positive and negative peaks (5) but also result in differential scaling, peak 
broadening, and cross terms with overlapping peaks and baseline offsets. 
 

In this communication we describe a technique for phasing two-dimensional spectra based on the use of separate 
quadrature in the two dimensions. We will show that this method can be applied with only minor modifications in the 
experimental design of the usual two-dimensional spin exchange experiment, and we will present experimental 
results obtained with the method. Finally we will discuss the impact of these methods on signal to noise ratio and 
resolution. 
 

BASIS FOR TWO-DIMENSIONAL PHASING IN FOUR QUADRANTS 
 

A two-dimensional exchange experiment can be described by considering an oscillator with frequency  ω1 during 
the labeling period and a frequency ω2  after some mixing period. The observed amplitude of this oscillator will then 
be a function of both the time t1 used to label the spins and the time t2 at which it is observed during the acquisition 
period. The two-dimensional spectrum is usually obtained by taking Fourier transforms in both dimensions 
 
 
 

where ƒ(t1, t2) is the oscillation function in the time domain and F(ω1, ω2,) is its Fourier transform. Assuming an 
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 exponentially decaying oscillation we obtain the expression 

It is easily seen that both the real and imaginary parts of this expression are biphasic. Note that for each oscillator 
ƒ(t1, t2) can be separated into the product ƒ1(t1)* ƒ2(t2). This permits the integrals to be separated. By accumulating 
the real and imaginary parts of each dimension independently it is possible to calculate the product of the real part in 
one dimension and the real part in the other dimension to obtain 
 

 
This latter function is linear in the peak amplitude and is positive definite. It decays rapidly away from ω01,, ω02., as 
an absorption phase Lorentzian in both dimensions. 
 

Pure absorption phase spectra from a single-quadrant two-dimensional spin exchange experiment have been 
reported (6). In a four-quadrant experiment it is not possible to achieve a pure absorption phase two-dimensional 
spectrum using analytical transformations of the data (5, 7). The transformation outlined above generates a pure 
absorption phase spectrum in four quadrants using a nonanalytical transformation. It is based on extracting the real 
part of a complex function, a transformation that is linear to addition and real multiplication, but is not analytical. 
Having used this nonanalytical transformation, the projection cross-section theorem (8) does not apply, and there is 
no theoretical objection to a positive definite four-quadrant spectrum. 
 

Pure phase spectroscopy can be performed using the usual two-dimensional NMR pulse sequence (Fig. 1). The 
real part of the t1 dimension is obtained by taking the difference of the free-induction decays accumulated with the 

FIG. 1, The pulse sequence used in two-dimensional spin exchange spectroscopy. P1 and P2 are two Π/2 pulses used to label spins in 
the t1 dimension. The spins are allowed to mix and a final detection pulse P3, is applied to excite a free-induction decay during t2.  
 
 
 
 

phase of P2 at 0 and Π with respect to P1. The imaginary part of the t1 dimension is the difference of the 
free-induction decays accumulated with P2 at +Π/2 and -Π/2 with respect to P1. These free-induction decays (a pair 
for each t1) are stored and Fourier-transformed separately. They are all phase-corrected using the values appropriate 
for t1 = 0. After transforming in the t2 dimension, the complex time domain data in the t1 dimension is assembled 
from the extracted real parts of the two spectra for each value of t1. This complex matrix is transposed and 
Fourier-transformed to obtain the final phased two-dimensional spectrum. Phase correction can be applied in the 
second dimension, although in practice only a small linear phase correction is needed to compensate for the finite 
lengths of P1 and P2.  
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FIG. 2. The pure absorption phase spectrum of the aromatic region of BPT1 as described in the text. The displayed section is 200 

points square, extracted from the full 1024 point square spectrum. The spectrum was normalized so that the maximum peak (a dioxane 
marker) has an amplitude of 10,000. Contours are drawn at 15, 30, 60, 100, 250, 500, and 1000. 
 
 
 

Figure 2 illustrates the application of this experiment to a macromolecular system, the bovine pancreatic trypsin 
inhibitor. Data were collected at 25°C pD at 3.8 using the 500-MHz spectrometer at the Francis Bitter National 
Magnet Laboratory. A mixing period of 100 msec was used without the application of any homospoil pulse. Cyclic 
rotation of pulse phases and acquisition modes through the 64 possible phase combinations among the three pulses 
was used to cancel coherence effects between the labeling and acquisition pulses and to eliminate amplifier 
imbalance artifacts. The basic sequence of pulse phases is shown in Table 1. This subcycle of 16 phase settings was 
rotated through a four-phase CYCLOPS sequence (9, 10) to give an overall cycle of 64 acquisitions; 1024 point 
free-induction decays were collected at 512 t1 values with a spectral width of 6250 Hz. Gaussian line broadenings of 
10 Hz were applied in both dimensions, and the data were zero-filled to 1024 points in the t1 dimension prior to 
Fourier transformation. 

This technique offers several practical advantages when compared to magnitude or power spectrum methods. 
Primary among these is the improved discrimination of the method. Figure 3 shows an absolute value spectrum 
calculated from the data presented in Fig. 2 with the same line broadenings and the same contour levels. It is much 
easier to recognize peaks in the phased spectrum and to distinguish them from the noise present in the ω1 dimension 
and from overlapping tails of larger peaks. In the pure phase spectrum the noise is seen to be randomly phased, but in 
the magnitude spectrum it is positive definite like the signal of interest. Line-widths in the phased spectrum are 
narrower than those in the magnitude spectrum minimizing the need to apply resolution enhancements with their 
associated artifacts, and resulting in an effective increase in signal-to-noise ratio. For Lorentzian lines the peak 
widths at half-height are 1/T1 an improvement of the square root of three over the spectrum width at half-height. 
Even more dramatic resolution improvements occur when one considers widths at lower heights because the limiting 
behavior of Lorentzian peaks is a decay with (ω − ω0)-2 while magnitude peaks decay as (ω − ω0)-1. The long tails 
present in magnitude spectra are particularly bothersome in samples with large  



 

 

 
dynamic ranges where they obscure significant regions of the spectrum. Finally, in crowded regions of the spectrum 
prominent overlap effects are seen in the magnitude spectrum which are absent in the phased spectrum. The 
amplitude in the pure phase spectrum is a linear function of the resonance amplitude without cross effects between 



 

 

overlapping peaks. For these reasons, pure phase spectra should greatly simplify quantitative data analysis. 
The sensitivity of two-dimensional spectroscopy has been examined in detail previously (11). The effect of 

phasing on the sensitivity depends on how sensitivity is defined. A pure phase two-dimensional NMR experiment 
results in four linearly independent spectra; four-quadrant and one-quadrant experiments are equivalent (assuming 
that quadrature phase data acquisition is used in both). Each component will contain noise with a standard deviation 
of σ. All four components of the noise would appear in the power or magnitude spectrum 

 

As Aue et al. note, there is a systematic shift of the data in a magnitude spectrum resulting from the average noise 
power 

 

where f1 and f2 are the noise distribution functions for the two parts of the absolute value spectrum. Because each is 
composed of the sum of two of the four independent parts of the phased two-dimensional spectrum each will have a 
standard deviation of 21/2σ. Assuming a Gaussian distribution for the noise the integral can be evaluated: 

The variance of the absolute value spectrum is therefore 
 

 

In the two-dimensional experiment the magnitude spectrum has a lower noise variance by a factor of 0.86. In a 
one-dimensional experiment there are only two components so the noise variance in a magnitude spectrum is lower 
than the phased spectrum by a factor of 2 - Π/2 or 0.42. Defining the noise level as the square root of the variance, 
the phased spectrum has a lower signal-to-noise ratio by a factor of 0.93 in two-dimensional spectroscopy (or 0.65 in 
one-dimensional spectra). It should be noted that the noise distribution in the magnitude spectrum has a significant 
third moment (skew) while the noise in a pure phase spectrum is symmetric. For practical purposes the magnitude 
and pure phase spectra appear to be essentially equivalent in signal-to-noise ratio. The rms error in the spectrum 
resulting from the addition of white noise of amplitude σ to each component of the data during acquisition is 
improved by a factor of 2 for phased spectra compared to magnitude spectra because there is no systematic offset of 
the data. 

In summary, a method is presented for obtaining absorption phase two-dimensional NMR data. Experimental 
results are presented and several advantages of the method are discussed. These experiments should provide unique 
insight into the solution structure and dynamics of biological macromolecules. 
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