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Abstract

Motivation: Searching a protein sequence database for
homologs is a powerful tool for discovering the structure and
function of a sequence. Two new methods for searching
sequence databases have recently been described: Proba-
bilistic Smith—Waterman (PSW), which is based on Hidden
Markov models for a single sequence using a standard
scoring matrix, and a new version of BLAST (WU-BLAST?2),
which uses Sum statistics for gapped alignments.

Results: This paper compares and contrasts the effectiveness
of these methods with three older methods (Smith—
Waterman: SSEARCH, FASTA and BLASTP). The analysis
indicates that the new methods are useful, and often offer
improved accuracy. These tools are compared using a
curated (by Bill Pearson) version of the annotated portion of
PIR 39. Three different statistical criteria are utilized:
equivalence number, minimum errors and the receiver
operating characteristic. For complete-length protein query
sequences from large families, PSW'’s accuracy is superior to
that of the other methods, but its accuracy is poor when used
with partial-length query sequences. False negatives are
twice as common as false positives irrespective of the search
methods if a family-specific threshold score that minimizes
the total number of errors (i.e. the most favorable threshold
score possible) is used. Thus, sensitivity, not selectivity, is the
major problem. Among the analyzed methods using default
parameters, the best accuracy was obtained from SSEARCH
and PSW for complete-length proteins, and the two BLAST
programs, plus SSEARCH, for partial-length proteins.
Availability: The data and search tools are available from
their original authors.
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Introduction

Searching a molecular sequence database for homologous
sequences is a powerful and widely used tool for determining
the possible structure and function of a new sequence. There
are a variety of algorithms and tools available to conduct
these searches. The traditional algorithms are guaranteed to
find the ‘optimal’ alignment and are based mostly on
dynamic programming (Needleman and Wunsch, 1970;
Smith and Waterman, 1981). The optimality is guaranteed
under a specific scoring criterion that includes the scoring
matrix and gap penalties. This optimal alignment is quite
often not the true biological alignment. Several researchers
have noted the importance of considering suboptimal align-
ments in assessing the significance and value of the optimal
alignment (Argos et al., 1991; Saqi and Sternberg, 1991;
Zuker, 1991; Agarwal and States, 1996). FASTA (Pearson
and Lipman, 1988) and BLAST (Altschul er al., 1990;
Altschul and Gish, 1996) are heuristic search tools that find
the ‘optimal’ alignment with high probability and are
computationally less expensive. Hidden Markov model
(HMM)-based search methods (Krogh et al., 1994; Eddy et
al., 1995; Eddy, 1996) improve both the sensitivity and
selectivity of sequence database searches. They use
position-dependent scores to characterize and build a model
for an entire family of sequences. HMMs work best with
large sequence families.

Bucher and Hoffman (1996) have proposed an algorithm
combining aspects of HMMs and dynamic programming to
build models for single sequences using position-
independent scoring and affine gap penalties. The scores are
drawn from a traditional scoring matrix, such as
BLOSUMBS62. Instead of computing in the log-odd score
space, they compute the probabilities for the alignment. In
the innermost loop of the dynamic programming, rather than
choose a step corresponding to the most likely alignment,
they add the probabilities from all the possible local align-
ments. This is similar to both Bishop and Thompson’s (1986)
method and the forward algorithm for HMMs. Thus, the
number at each cell in the matrix is proportional to the sum
of the probabilities of all the alignments ending at that point.
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The sum of these numbers in all the cells of this matrix is an
estimate of the relatedness of the two sequences. This
number is divided by the null estimate, which is the number
calculated in a similar fashion for two equal-length random
sequences. This technique relies less on the score for an
‘optimal’ alignment, and includes the probabilities from the
suboptimal alignments in evaluating the relatedness of two
sequences.

A new developmental version of BLAST (WU-BLAST?2
available from http://blast.wustl.edu/) has been released that
incorporates Sum statistics for gapped alignments (Altschul
and Gish, 1996).

Pearson (1995) has made available a curated database and
query sequences that may be used as a ‘standard’ for se-
quence comparison tools. This is the annotated portion of the
National Biomedical Research Foundation protein sequence
database (PIR1, Release 39, December 31, 1993) (Barker
et al., 1990) augmented with 237 additional sequences for a
total of 12 219 sequences. Viral polyproteins (because of
their mosaic nature) and 23 other families (for which all the
members were so closely related that none of the programs
have difficulty discriminating) were not utilized as query se-
quences by Pearson. Sequences from 67 of the remaining
largest families were used as queries. Two query sequences
were selected from each family. In addition to these complete
query sequences, two partial sequences from each family
augmented on either side with random sequence were also
used. Details are available from Pearson (1995).

System and methods
Metrics for comparing methods

Pearson (1995) has introduced the equivalence number as a
criterion for measuring the search accuracy of a tool. The
equivalence score is the threshold score at which the number
of false positives equals the number of false negatives. The
equivalence number (EN) is the number of false positives
(equal to the number of false negatives) using the equival-
ence score as the classification threshold. Thus, the
equivalence number balances the sensitivity (false
negatives) and selectivity (false positives) of an algorithm.
The sequence similarity search problem is a special case of
the sequence classification problem with the object being to
classify sequences from the database as homologous or non-
homologous to the query sequence. An alternative to the
equivalence number is the error rate (i.e. the sum of the
number of false positives and false negatives), which is often
used in Bayesian classification (Duda and Hart, 1973). The
minimum number of errors (MER) is upper bounded by
twice the equivalence number, thus MER< 2 X EN. For mini-
mum errors, the threshold score must lie between the score
for a true positive and the score for a true negative, and that
true negative must follow that true positive in the rank order

of the tool. For example, if there are 100 homologs and 1000
non-homologs, and the search algorithm ranks them in the
order 80 homologs, 1 non-homolog, 20 homologs and 999
non-homologs, then the minimum number of errors is 1, with
the threshold score between the last homolog and the first of
the 999 non-homologs. The equivalence number is also 1,
but the threshold score is set before the last homolog. The
MER thus provides more biologically plausible thresholds.
The MER also makes it possible to compare the sensitivity
and selectivity of two algorithms/tools. At the MER thresh-
old, the number of both the false positives and false negatives
may be measured separately, indicating which of them has
the larger contribution to the error.

Gribskov and Robinson (1996) have proposed the receiver
operating characteristic (ROC) as a quantitative measure of
the usefulness of a sequence classification. This measure, like
the previous two, incorporates sensitivity and selectivity, but
it depends significantly on the exact order of the positive hits
and negative hits. ROC is a real number between O and 1,
which is evaluated as the area under the parametric curve of
the fraction positive (i.e. the number of homologs observed
divided by the true number of homologs) plotted as a function
of the fraction negative (i.e. the number of non-homologs ob-
served divided by the total number of non-homologs). The
data points in this plot correspond to the rank order from the
tool; e.g. the plot may be parameterized on the ordering of
sequences according the BLAST p-value. A perfect tool will
list all the positives before the negatives; thus, the ROC plot
will be a vertical line at x = 0 followed by a horizontal line at
y=1. The corresponding ROC value is 1. A poor tool will mix
positives and negatives, resulting in an ROC value close to 0.
Gribskov and Robinson propose using ROCs5q which scans
down the list until 50 negatives are observed. This is useful
because the number of non-homologs is 10010 000 times
more than the number of homologs, and the ROC value is
dominated by the non-homologs and is always very close to
1. The ROC must then be computed to a large number of sig-
nificant digits to compare the methods. For the remainder of
this paper, we use ROC to imply ROCj5y.

Search tools

We evaluated five tools according to the above three char-
acteristics.

(i) SSEARCH Release 3.0t74 (Pearson and Lipman,
1988). This is an implementation of the local alignment
dynamic programming technique proposed by Smith
and Waterman (1981). It includes code optimizations
from Phil Green. The default scoring matrix is BLO-
SUM 50, and gap penalties are —12 for initiation and —2
for continuation. The sequences were ranked according
to the ‘z-score’.
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(ii) FASTA Release 3.0t74 (Pearson and Lipman, 1988).
The default scoring matrix is BLOSUMS0, and the gap
penalties are (—12, —2). The sequences were ranked ac-
cording to the ‘z-score’.

Probabilistic Smith—Waterman (PSW) (Bucher and
Hoffman, 1996). The default scoring matrix is BLO-
SUM 45, and gap penalties are (-8, —4).

BLASTP Release 1.4.9MP (Altschul ez al., 1990). The
default scoring matrix is BLOSUM 62, and gaps are
not permitted [i.e. gap penalty (—eo, —oo)]. The se-
quences were ranked according to the probability esti-
mate from the Sum statistics.

WU-BLASTP2 Release 2.0al1MP (Altschul ez al., 1990;
Altschul and Gish, 1996). The default scoring matrix is
BLOSUM 62, and gap penalties are (-9, —2). The se-
quences were ranked according to the probability esti-
mate from the Sum statistics of gapped alignments.

(iii)

(iv)

)

The tools were compared with default scoring matrices and
gap penalty options. This assumes that each tool has been
configured with the scoring matrix and gap penalties that
provide it with maximum accuracy. The performance of vari-
ous tools as functions of the scoring parameters have been
compared earlier (Altschul, 1993; Altschul et al., 1994; Pear-
son, 1995; Gribskov and Robinson, 1996). It could be argued
that the observed differences between the tools are primarily
the function of their choices of scoring systems. To neutralize
the effect of the scoring system, the tools were also compared
with the same scoring system [BLOSUM 62 and gap penalty
(-9, —2)] for a single set of query sequences (e0-b62).

Results and discussion

Table 2 (spanning two pages) contains the names for the fam-
ilies, the number of family members in the examined data-
base, the length of the query sequence in set €0, and the corre-
sponding minimum number of errors for the various
methods. For a number of families, all the methods had per-
fect discrimination (zero error rate), but, in general, there is
considerable variation in the error rates, depending on the
family. Each tool outperforms every other tool for at least
some protein families. It is quite likely that some of the tools
are actually better than other tools. The observed variation is
probably because of sampling errors due to the small sizes
for some of the protein families. PSW performs better than
any other method in four of the seven families that have >100
members. This suggests that PSW actually performs better
than any other method when complete protein query se-
quences are provided; the smaller families for which it is ob-
served not to perform as well may be chance observations,
especially considering the small sample. PSW is incorporat-
ing information from a large number of suboptimal align-
ments in evaluating the similarity relationship. Related pro-
tein sequences often have conserved regions (corresponding
to regions with secondary and tertiary structure) interspersed
with non-conserved regions (corresponding to turns). There
are numerous equally valid ways of aligning the non-con-
served regions, leading to an exponentially large number of
high-scoring suboptimal alignments.

Table 1. A summary of the statistics for the various search methods and sequence query sets

Method PSW SW FASTA BLASTP BLASTP2
Query set Stat + += + += + += + += + +=
e0 MER 10 41 4 47 1 34 2 32 3 42
e0 ROC 10 34 4 35 7 25 4 26 7 32
e0 EN 1 39 1 46 2 34 2 29 3 43
el MER 8 41 3 43 1 35 6 35 2 42
el ROC 13 31 4 31 6 27 6 26 5 31
el EN 6 44 2 48 2 38 4 36 2 45
e0-b62 MER 12 33 2 43 2 32 2 32 3 42
e0-b62 ROC 10 29 7 33 5 26 4 26 5 33
e0-b62 EN 1 33 1 44 3 32 2 30 3 44
10 MER 3 23 2 37 3 36 1 34 3 35
10 ROC 8 11 8 21 6 18 12 17 12 18
10 EN 3 25 6 33 3 34 8 32 3 39
11 MER 5 24 4 32 5 31 13 32 4 35
11 RO 10 15 8 21 7 21 13 21 6 23
11 EN 8 23 2 37 5 34 8 33 2 40

The first row in this table is a summary of the data from Table 2. The number in the ‘+’ column is the number of protein families (maximum 67) for which the
method had better discrimination (i.e. ability to rank family members ahead of non-family members) than any of the other methods. The ‘+ =" column indicates
the number of protein families (maximum 67) for which the method had better or equal discrimination in pairwise comparison with all other methods. The best
numbers for each statistic in a query set are in bold. 0 and el are the complete length query sequences, one from each family; e0-b62 is the same set of query
sequences as €0, but all the methods were evaluated under uniform scoring conditions, namely BLOSUM 62 matrix and gap penalties (=9,-2); 10 and 11 are the
partial-length query sequence sets. Explanations of the statistics are provided in System and methods: Metrics for comparing methods.
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Table 2. The minimum number of errors (MER) for the various methods and families using a single set of query sequences (e0) and the default scoring
parameters. The Best Method column is left blank if all the methods performed equally well

Description/superfamily Length  Size PS SW FA BP B2 Best method
Hemoglobin o/ 141 505 14 20 34 36 31 PS

Ig kappa chain V-I region 108 280 11 20 49 67 22 PS

G-prot. coupled receptors 348 165 29 26 47 34 27 SW
Cytochrome C 105 142 18 24 25 29 24 PS

Snake neurotoxin 74 109 0 0 0 5 0 PS/SW/FA/B2
Calcium binding EF-hand 159 106- 15 11 12 12 11 SW/B2
Glutathione transferase 222 106 3 4 6 9 5 PS

Protein kinase, cAMP-dependent 351 97 74 70 72 77 75 SwW
Ferredoxin 54 93 58 57 68 60 58 SW
Ribulose-bisphosphate carboxylase 139 77 2 2 2 2 2

Ig kappa chain C region 106 74 18 18 24 26 18 PS/SW/B2
Hemagglutinin 567 73 0 0 0 1 0 PS/SW/FA/B2
Histocompatibility antigen 338 71 0 0 2 2 3 PS/SW
Insulin 110 69 3 3 3 3 3

a-Crystallin chain A 173 67 2 4 4 8 3 PS
Phospholipase A2 148 58 1 0 1 2 0 SW/B2
Glyceraldehyde-3-P DH 335 46 0 0 1 0 0 PS/SW/BP/B2
Transforming prot. (N-ras) 189 45 1 1 1 1 1

Serine protease 246 45 20 22 16 22 19 FA

Glucagon precursor 180 44 14 10 11 7 6 B2
H*-transporting ATP synthase o chain precursor 553 43 1 1 1 3 2 PS/SW/FA
Hemagglutinin-neuraminidase 576 42 0 0 0 0 0

Ribonuclease 124 40 0 0 0 0 0

Interferon a-1-6 189 39 0 0 0 0 0

Glutamate-ammonia ligase 373 39 0 0 0 1 0 PS/SW/FA/B2
Azurin 129 38 19 17 23 27 22 SW

Fusion protein—Sendai virus 565 36 0 0 0 0 0

Cytochrome P450 497 35 0 0 3 2 2 PS/SW

Outer capsid protein VP8 280 34 0 0 0 0 0

gag polyprotein 512 33 3 3 5 3 3 PS/SW/BP/B2
Keratin 471 32 5 5 8 4 5 BP
Nucleoprotein-influenza A 498 31 0 0

Acidic ribosomal protein P2 115 29 3 6 8 8 7 PS

E6 protein papillomavirus 158 29 0 0 1 0 0 PS/SW/BP/B2
Lysozyme 130 28 0 0 0 0 0

N-Cadherin 906 27 0 0 0 0 0

Exo-o-sialidase 454 27 0 0 0 0 0

L2 protein papillomavirus 507 27 0 0 0 0 0

Scorpion neurotoxin 64 26 5 5 5 6 5 PS/SW/FA/B2
E7 protein papillomavirus 98 26 0 0 0 1 1 PS/SW/FA
H*-transporting ATP synthase lipid-binding 75 26 1 1 1 1 0 B2
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Table 2. Continued.

Description/superfamily Length  Size PS SW FA BP B2 Best method
L-Lactate dehydrogenase 333 26 0 0 2 3 0 PS/SW/B2
E2 protein papillomavirus 322 26 0 0 0 0 0

Core antigen—hepatitis B 183 25 0 0 0 0 0

Antithrombin-III 464 25 0 0 1 0 0 PS/SW/BP/B2
Thymidine kinase 376 25 1 1 1 0 1 BP
Phycocyanin 162 25 0 0 0 0 0

Protamine Y2 34 24 2 1 1 3 1 SW/FA/B2
Transforming prot. (myc) 439 24 0 0 0 0 0

Matrix protein 348 24 0 0 6 0 0 PS/SW/BP/B2
H-transporting ATP synthase P6 226 23 1 1 8 4 1 PS/SW/B2
Alcohol dehydrogenase A 375 23 0 0 0 0 0

Glycoprotein B 857 23 0 0 0 0 0

ITonotropic acetylcholine receptor 457 23 0 0 0 0 0

Non-structural protein NS2 121 22 0 1 1 2 2 PS

Annexin I 346 22 4 4 4 4 4

Histone H1b 218 22 3 2 3 2 2 SW/BP/B2
Metallothionein 61 21 6 6 6 6 3 B2
B-Crystallin chain Bp 204 21 0 0 0 0 0

Proteinase inhibitor 71 21 2 3 3 3 3 PS

Hepatic lectin H1 291 20 2 1 1 7 1 SW/FA/B2
E2 glycoprotein precursor 1447 20 0 0 0 0 0

a-2u-Globulin precursor 181 20 6 9 10 10 9 PS

Pepsin 388 20 0 0 0 0 0

DNA-directed DNA polymerase 1462 20 5 1 1 1 2 SW/FA/BP
Prolactin 227 20 0 0 0 0

Vitamin B12 trans. btuD 249 20 3 10 PS

Total 3544 355 367 490 510 394

False positives 109 126 110 159 102

False negatives 246 241 380 351 292

‘Length’ is the length of the query sequence for that family in e0 and ‘Size’ is the size of the family in the Pearson database. PS, Probabilistic Smith—Waterman;
SW, Smith—Waterman; FA, FASTA; BP, BLASTP 1.4; B2, WU-BLASTP2. The false-positives and false-negatives in the last two rows are the break-up of the
total errors across all the families. Sequence descriptions are from Pearson (1995).

The information from Table 2 is summarized in the first row
of Table 1. The method with the minimum MER for ‘hemo-
globin o/’ (see the first row in Table 2) is PS. Thus, PS has
the superior statistic (lower MER) for this family. The number
of solo occurrences of PS in the Best method column in Table
2 add up to 10, which is the number in the top left
(e0—MER,+) cell of Table 1. The number 41 in the adjacent
column (+ =) is a count of the number of families for which
the method had as low an MER as any other method. This is
equal to the number of solo and/or joint occurrences of the tool
in the Best method column in Table 2. Table 1, in addition to
this summary line for e0 and MER, contains a summary of the

results for the five data sets and using the three statistical cri-
teria.

Smith—Waterman, not surprisingly, is at least as accurate as
any other method for the most number of families over the five
query sets (examine the ‘+ =" columns in Table 1). The new
version of BLAST, WU-BLAST?2 from Warren Gish, which
includes Sum statistics of gapped alignments, is also accurate
in this measure. Neither BLASTP 1.4 nor FASTA performed
as accurately. Some of this may be related to the dependencies
between the methods, and consequent failure to outperform a
very similar method. Table 3 includes the pairwise compari-
sons for the various methods to help assess this possibility.
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Table 3. Pairwise comparisons of the five methods. The number in the cell in row i, column j is the number of families (from 67) in which method i did
better than method j according to the statistic. For example, in the upper left-most subtable, PS had lower error rates compared to FA in 24 families, while

FA had lower error rates in seven families

Minimum no. of errors

False positives

False negatives

e0—MER e0—FP e0—FN

PS SW  FA BP B2 PS SW FA BP B2 PS SW  FA BP B2
PS - 11 24 29 16 PS - 10 11 15 7 PS - 8 23 25 15
SW 11 - 26 27 15 SW 5 - 7 13 5 SW 11 - 23 26 17
FA 7 1 - 20 8 FA 7 7 - 15 3 FA 9 4 - 9 9
BP 6 4 14 - 5 BP 7 9 8 - 4 BP 10 6 17 - 9
B2 11 5 26 27 - B2 7 11 9 17 - B2 11 5 22 21 -

el—MER el—FP el—FN

PS SW FA BP B2 PS SW FA BP B2 PS SW  FA BP B2
PS - 11 20 23 12 PS - 7 5 10 9 PS - 12 22 21 12
SW 11 - 23 22 13 SW 8 - 5 9 9 SW 13 - 24 19 12
FA 11 4 - 18 6 FA 8 6 - 11 10 FA 8 4 - 16 4
BP 12 11 17 - 8 BP 7 4 5 - 10 BP 12 12 20 - 11
B2 12 8 20 19 - B2 7 6 5 10 - B2 13 10 20 18 -

e0-b62—MER e0-b62—FP e0-b62—FN

PS SwW FA BP B2 PS SW FA BP B2 PS SW FA BP B2
PS - 16 21 23 16 PS - 13 10 15 8 PS - 13 22 20 13
SW 20 - 27 27 9 SW 4 - 7 15 5 SW 21 - 27 22 13
FA 11 6 - 21 7 FA 6 9 - 15 5 FA 13 3 - 17 5
BP 13 6 17 - 5 BP 5 8 - 4 BP 18 9 20 - 9
B2 19 10 27 27 - B2 6 9 8 17 - B2 21 6 26 21 -

10—MER 10—FP 10—FN

PS SwW FA BP B2 PS SW FA BP B2 PS SW FA BP B2
PS - 14 11 11 10 PS - 11 12 11 14 PS - 9 12 9 8
SW 35 - 13 17 17 SW 13 - 9 11 12 SW 34 - 15 15 12
FA 35 12 - 15 13 FA 14 9 - 8 12 FA 32 11 - 16 12
BP 31 21 22 - 20 BP 14 10 11 - 12 BP 28 20 19 - 17
B2 35 13 18 16 - B2 14 10 8 7 - B2 33 14 19 16 -

11—MER 11—FP 11—FN

PS SW FA BP B2 PS SW FA BP B2 PS SwW FA BP B2
PS - 12 13 12 8 PS - 15 12 13 14 PS - 8 13 10 8
SW 27 - 18 16 11 SW 5 - 5 10 10 SW 28 - 19 17 9
FA 27 12 - 18 10 FA 10 15 - 10 12 FA 25 5 - 16 7
BP 29 18 18 - 16 BP 8 11 7 - 12 BP 30 14 18 - 15
B2 27 14 20 17 - B2 10 12 8 8 - B2 27 12 20 18

For complete-length query sequences, according to all
three statistics (MER, ROC and EN), PSW (Bucher and Hof-
fman, 1996) has higher accuracy for more families than any
other method (examine the ‘+” columns in Table 1). When a
partial-length protein sequence packed between random se-
quences was used as a query (10 and 11), PSW lost its advan-

tage, and both WU-BLAST2 and BLASTP 1.4 became com-
petitive in the ‘+ =" criteria. SSEARCH continued to perform
well, but not as well as it did for complete-length query se-
quences. BLASTP 1.4 did better in the + criterion than the
other programs. This may indicate that the results from the
other programs are more related to each other, perhaps be-
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cause they all use gapped alignments. BLASTP 1.4 may be
the most orthogonal to the other programs for partial-length
protein queries.

It is important to utilize more than one tool when con-
fronted with either ambiguous similarity results or a com-
plete lack of significant similarities. PSW may have an ad-
vantage for complete-length proteins, but it is expensive
computationally; WU-BLAST?2 offers comparable perform-
ance at a lower cost. The three statistical measures mostly
agree on the method that performs better for each class of
query sequences (such as e0, el, etc.). Thus, the choice of the
statistical measure appears to have little influence on this part
of the analysis.

In Table 2, the error rates are split up into false positives
and false negatives. The total number of false positives (i.e.
the number of non-homologous sequences classified as ho-
mologous) over all the families for query set e0 is very simi-
lar across all the tools, except for BLASTP 1.4 which has a
high false-positive rate. The major variation observed is in
the false-negative rates, which are the best for SW and PSW
for full-length queries. Moreover, between two-thirds and
three-quarters of the errors are due to false negatives, irre-
spective of the search tool. Ostensibly, these are family
members (distant to the query sequence) that none of the
search tools can classify as similar. It would be useful to
quantify the errors that are common to all the search tools.

The results from the pairwise tests of the various methods
in Table 3 indicate that PSW and SSEARCH perform simi-
larly on query sets e0 and el, but SSEARCH does a little
better on the e0-b62 query set. Thus, if family sizes are ig-
nored, there is no clear distinction between the performances
of PSW and SSEARCH. With partial-length queries, PSW is
comparable to the other methods only if false positives are
considered; if either false negatives or total errors are con-
sidered, PSW’s performance is the worst. SSEARCH and
WU-BLAST?2, on the other hand, perform consistently well
in all categories (the numbers in the SW and B2 columns are
low, and they are high in the SW and B2 rows). The numbers
in the five subtables in the middle column are all remarkably
similar, indicating that there is little or no discrimination for
false positives among the various methods.

Both FASTA and SSEARCH performed much better with
z-scores (the default option in Version 3) then with opt scores
(analysis not shown). Thus, higher accuracy is achieved by
using a good implementation (with z-scores) of Smith—Wat-
erman, such as SSEARCH, rather than a simplistic in-house
implementation. The default word size (ktup setting of two)
for FASTA was used for this entire analysis. kfup = 1 does
provide higher accuracy.

It would be useful to examine closely both the false posi-
tives and false negatives for each of the tools, and evaluate
the decrease in the error rate caused by using combinations
of these tools. In other words, are all the tools missing the

same sequences, or how much can be gained by using mul-
tiple tools? Statistical tests to evaluate which tool is best
given the error rates and/or ROC values would be valuable.
Pearson (1995) has used the sign test to estimate the signifi-
cance for equivalence numbers, but the sign test ignores the
magnitude of the difference between families, the size of the
families, and the data from all the families for which the tool
performed equally well. The results in Table 1 are consistent-
ly different in the ‘+” and ‘+ =" categories. Even though the
sign test is used for pairwise comparisons, while the data in
this table are for all-against-all comparisons, the sign test
would still overlook the effects of the columns. The results
in Tables 1 and 3 also, unfortunately, overlook the sizes of the
families.

In summary, assuming that these tools are used with their
default options, for complete-length proteins, we would rec-
ommend using SSEARCH and PSW. We would substitute
PSW with WU-BLAST? if computational time was a con-
sideration. For partial-length proteins, we would recommend
the two BLAST programs and possibly SSEARCH.
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Note added in proof

The new version of BLAST [Altschul ez al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res., 25, 3389-3402]
was not included in this analysis, as it was released after this
paper had been accepted.
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